Suggestions
    Go directly to

      Electric cars require innovative brake systems

      Electrification has brought new challenges to vehicle brakes. Electric cars brake differently than those with combustion engines and do so to a large extent automatically using the electric motor to recover brake energy. Thanks to the high rate of recuperation, the brake is only seldom used in many everyday driving situations. While one might think this would lead to a long service life for brake pads and discs, precisely the opposite is true in the case of disc brakes. Low use renders them more prone to corrosion and, following long periods of non-actuation, they lose braking power, of which 100 percent needs to be available at all times. In the case of brake systems for electric cars, Continental has therefore resorted to a tried and tested principle: the EPB-Si drum brake for the rear axle. Owing to its closed design, this causes virtually no particle emissions, is corrosion-resistant and requires little maintenance. An integrated electric parking brake also offers great freedom and more options when designing the vehicle interior. Moreover, the system is scalable and suitable for vehicles weighing more than 3.5 metric tons in some cases. Continental has also developed a green brake caliper with advanced functions for disc brakes on the front axle and for heavier vehicles. With this product, the pad surface and brake caliper dimensions are reduced to a minimum, while a larger gap and the possibility of actively moving the pad further back from the brake disc additionally lower the residual resistance.

      Future brake systems must be able to do more than “merely” brake the vehicle safely. They also need to make a significant contribution to efficiency and meet new requirements for automated driving. Another Continental development in this area is the electrohydraulic MK C2 brake system. This supports the transition to a real brake-by-wire in which the brake pedal is decoupled from the actual pressure generation. Once the pedal position is detected electronically, a high-performance motor generates the boosted brake pressure and is able to brake the vehicle in fractions of a second. The MK C2 achieves up to around 30 percent higher efficiency during recuperation. During automated driving according to SAE level 3 or higher, the MK C2 can in turn generate considerable dynamic brake pressure in milliseconds as soon as the automation system or an assistance system so requires. It is therefore predestined for new interior concepts and cockpit dimensions.

      Back to overview "Into the Electric Future of Mobility with Continental".

      Find out more about Electric Mobility at Continental.

      Brake Systems

      Brake systems are becoming increasingly intelligent so they can meet the future needs and requirements of automated driving and electrification; and this in newly conceived vehicles designed with modified architecture. This functional extension requires a profound understanding of the system in order to combine uncompromising safety and sustainability in future brake systems – and in the long term also modular and distributed brake systems.

      Cookie Policy

      We use cookies to provide you with the best experience on our website. Click on "Accept all" to allow all cookies or "Change cookie settings" to decide individually.

      Note: If you consent to the use of performance cookies, you also consent to the transfer of your personal data to insecure third countries (e.g. to the USA). These insecure third countries do not provide a level of data protection comparable to EU standards. In the case of certain third party providers, such as Google and Mouseflow, no other guarantees are offered to compensate for this deficit. There is therefore a risk that the transmission of your personal data may result in state authorities accessing your personal data without you having effective legal protection options.

      For more information on performance technologies and the transfer of data to third countries, please refer to the privacy policy.

      By clicking the "Accept all" button, you explicitly consent to this. Consent can be revoked at any time by changing the cookie settings. The further processing of data already collected before revocation by the third-party provider cannot be excluded.

      A cookie is a small data file that is stored on your device. We use cookies to provide basic and convenience functionalities, measure website performance and analyze user behavior on the website. 

      Required cookies are always activated because they are indispensable for the operation of the website and to store your cookie consent. Functional and performance cookies are optional. All optional cookies are deactivated by default.

      You can change your cookie settings at any time by visiting our Cookie Policy or by clearing the cache in your browser. 

      Show more Show less
      Back
      Required cookies Required

      These cookies are required to provide you with key functions.

      Functional cookies

      These cookies are used to provide certain functionalities to you.

      Performance cookies

      These cookies are used to measure website performance and user behavior. All collected data are analyzed anonymously.